Exercise 16

Differentiate the following $F(x)$ as many times as you need to get rid of the integral sign:

$$
F(x)=e^{x}+\int_{0}^{x}(x-t)^{4} u(t) d t
$$

Solution

Take the derivative of both sides with respect to x and use the Leibnitz rule on the integral.

$$
F^{\prime}(x)=e^{x}+0 \cdot 1-x^{4} u(0) \cdot 0+\int_{0}^{x} \frac{\partial}{\partial x}(x-t)^{4} u(t) d t
$$

The first derivative of $F(x)$ is thus

$$
F^{\prime}(x)=e^{x}+\int_{0}^{x} 4(x-t)^{3} u(t) d t
$$

Differentiate both sides once more with respect to x, again using the Leibnitz rule.

$$
F^{\prime \prime}(x)=e^{x}+0 \cdot 1-4 x^{3} u(0) \cdot 0+\int_{0}^{x} \frac{\partial}{\partial x} 4(x-t)^{3} u(t) d t
$$

The second derivative of $F(x)$ is thus

$$
F^{\prime \prime}(x)=e^{x}+\int_{0}^{x} 12(x-t)^{2} u(t) d t .
$$

Differentiate both sides once more with respect to x, again using the Leibnitz rule.

$$
F^{\prime \prime \prime}(x)=e^{x}+0 \cdot 1-12 x^{2} u(0) \cdot 0+\int_{0}^{x} \frac{\partial}{\partial x} 12(x-t)^{2} u(t) d t
$$

The third derivative of $F(x)$ is thus

$$
F^{\prime \prime \prime}(x)=e^{x}+\int_{0}^{x} 24(x-t) u(t) d t .
$$

Differentiate both sides once more with respect to x, again using the Leibnitz rule.

$$
F^{(4)}(x)=e^{x}+0 \cdot 1-24 x u(0) \cdot 0+\int_{0}^{x} \frac{\partial}{\partial x} 24(x-t) u(t) d t
$$

The fourth derivative of $F(x)$ is thus

$$
F^{(4)}(x)=e^{x}+\int_{0}^{x} 24 u(t) d t .
$$

Differentiate both sides once more with respect to x.

$$
F^{(5)}(x)=e^{x}+\frac{d}{d x} \int_{0}^{x} 24 u(t) d t
$$

The fundamental theorem of calculus can be applied here to eliminate the integral sign. The fifth derivative of $F(x)$ is thus

$$
F^{(5)}(x)=e^{x}+24 u(x) .
$$

